SLIDING MOTION; FORCE

F = Force (lbs)

u = Coef. of Fric.

W = Surface Weight (lbs) A = Area of Contact (in²)

Torque: Where:

$$T = FR$$

Where:

$$N = \frac{V}{0.262D}$$

 $P = \frac{FV}{33,000}$

Objects in linear motion:

T = Torque (lb-ft)E = Force (lb)

F = Force (Ib) N = Speed of shaft rotation (rpm)R = Radius, or distance V = Velocity of material (fpm)

that the force is from the D = Diameter of pully or pivotal point (ft) procession of pully or pully or procession of pully or pully or

Horsepower:Rotating objects:

$$P = \frac{TN}{5250}$$

Where:
P = Power (hp)

F = Force (lb) V = Velocity (fpm)

Linear to rotary motion:

P = Power (hp)
T = Torque (lb-ft)
N = Shaft speed (rpm)

Modulus of elasticity:

$$E = \frac{PL}{A\triangle d}$$

Where:

Where:

E = Modulus of elasticity (lb/in²)P = Axial load (lb)

L = Length of object (in)

A =Area of object (in²) $\triangle d =$ Increase in length resulting from axial load (in)