SLIDING MOTION; FORCE F = Force (lbs) u = Coef. of Fric. W = Surface Weight (lbs) A = Area of Contact (in²) Torque: Where: $$T = FR$$ Where: $$N = \frac{V}{0.262D}$$ $P = \frac{FV}{33,000}$ Objects in linear motion: T = Torque (lb-ft)E = Force (lb) F = Force (Ib) N = Speed of shaft rotation (rpm)R = Radius, or distance V = Velocity of material (fpm) that the force is from the D = Diameter of pully or pivotal point (ft) procession of pully or pully or procession of pully or Horsepower:Rotating objects: $$P = \frac{TN}{5250}$$ Where: P = Power (hp) F = Force (lb) V = Velocity (fpm) Linear to rotary motion: P = Power (hp) T = Torque (lb-ft) N = Shaft speed (rpm) Modulus of elasticity: $$E = \frac{PL}{A\triangle d}$$ Where: Where: E = Modulus of elasticity (lb/in²)P = Axial load (lb) L = Length of object (in) A =Area of object (in²) $\triangle d =$ Increase in length resulting from axial load (in)